Search results

1 – 10 of over 3000
Article
Publication date: 22 December 2023

Huifeng Xi, Xiangbo Shu, Manjie Chen, Huanliang Zhang, Shi-qing Huang and Heng Xiao

The primary objective of this study is characterizing the anisotropic mechanical properties of corrugated cardboard and simultaneously simulating its drop cushioning dynamic…

Abstract

Purpose

The primary objective of this study is characterizing the anisotropic mechanical properties of corrugated cardboard and simultaneously simulating its drop cushioning dynamic effects under various drop conditions.

Design/methodology/approach

Static and dynamic tests were conducted on corrugated cardboard to obtain adequate experimental data in different directions. An effective anisotropic constitutive model is introduced by developing the honeycomb materials model in ANSYS LS-Dyna, and an effective approach is established toward effectively determining the material parameters from the test data obtained. The model is validated by comparing simulation results with experimental data from five drop conditions, including bottom drop, front drop, side drop, 30° side drop and edge drop. Additionally, simulations are conducted to study the cushioning performance of the packaging by dropping the corrugated cardboard at different heights.

Findings

The study establishes a fast and effective approach to simulating the drop cushioning performance of corrugated cardboard under various drop conditions, which demonstrates good agreement with experimental data.

Originality/value

This approach is of value for packaging protection and provides guidance for stacking of packaging during transportation.

Details

Multidiscipline Modeling in Materials and Structures, vol. 20 no. 1
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 13 April 2023

Xing Gao, Z.J. Zhang, Hong Wei, Xu Zhou, Quan Shi, Yang Wu and Lei Da Chen

Solder bumps for chip interconnections are downsizing from current approximately 100 µm to the expected 1 µm in future. As a result, the Cu-Ni cross-interaction in Cu/Solder/Ni…

Abstract

Purpose

Solder bumps for chip interconnections are downsizing from current approximately 100 µm to the expected 1 µm in future. As a result, the Cu-Ni cross-interaction in Cu/Solder/Ni solder joints will be more complicated and then strongly influence the growth of the intermetallic compounds (IMCs). Thus, it is critical to understand the fundamental aspects of interfacial reaction in micro solder joints. This paper aims to reveal the effect mechanism of reflow temperature and solder size on the interfacial reaction in Cu/Solder/Ni solder joints.

Design/methodology/approach

The Cu-Ni cross-interaction in the Cu/Sn/Ni micro solder joints with 50 and 100 µm solder sizes at 250°C and 300°C were observed, respectively. The line-type interconnects were soaked in silicone oil, and the temperature of the line-type interconnects was 250 ± 3°C and 300 ± 3°C, which were monitored by a fine K-type thermocouple, and followed by an isothermal aging process at various times. After aging, the specimens were removed from the silicone oil and cooled in the air to room temperature.

Findings

The major interfacial reaction product on both interfaces was (Cu,Ni)6Sn5, and the asymmetric growth of (Cu,Ni)6Sn5, evidenced by the thickness of (Cu,Ni)6Sn5 IMCs at the Sn/Ni interface was always larger than that at the Sn/Cu interface, resulted from the directional migration of Cu atoms toward the Sn/Ni interface under Cu concentration gradient. The morphology of (Cu,Ni)6Sn5 IMC at Sn/Cu interface was columnlike at 250°C, and which changed from columnlike to scallop with large aspect ratio at 300°C, while that at Sn/Ni interface gradually evolved from needlelike to the mixture of needlelike and layered at 250°C, and which evolved from needlelike to scallop with large aspect ratio at 300°C. The evolution of morphology of (Cu,Ni)6Sn5 is attributed to the content of Ni. Furthermore, the results indicate that the Cu-Ni cross-interaction was stronger with small solder size and relatively low temperature in the Cu/Sn/Ni micro solder joints.

Originality/value

The asymmetric growth of (Cu,Ni)6Sn5 in the Cu/Sn/Ni micro solder joints, evidenced by the thickness of (Cu,Ni)6Sn5 IMCs at the Sn/Ni interface, was always larger than that at the Sn/Cu interface. The morphology evolution of (Cu,Ni)6Sn5 IMC at both interfaces was attributed to the content of Ni. The Cu-Ni cross-interaction was stronger with small solder size and relatively low temperature in the Cu/Sn/Ni micro solder joints.

Details

Microelectronics International, vol. 41 no. 1
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 4 December 2023

Yang Liu, Xin Xu, Shiqing Lv, Xuewei Zhao, Yuxiong Xue, Shuye Zhang, Xingji Li and Chaoyang Xing

Due to the miniaturization of electronic devices, the increased current density through solder joints leads to the occurrence of electromigration failure, thereby reducing the…

71

Abstract

Purpose

Due to the miniaturization of electronic devices, the increased current density through solder joints leads to the occurrence of electromigration failure, thereby reducing the reliability of electronic devices. The purpose of this study is to propose a finite element-artificial neural network method for the prediction of temperature and current density of solder joints, and thus provide reference information for the reliability evaluation of solder joints.

Design/methodology/approach

The temperature distribution and current density distribution of the interconnect structure of electronic devices were investigated through finite element simulations. During the experimental process, the actual temperature of the solder joints was measured and was used to optimize the finite element model. A large amount of simulation data was obtained to analyze the neural network by varying the height of solder joints, the diameter of solder pads and the magnitude of current loads. The constructed neural network was trained, tested and optimized using this data.

Findings

Based on the finite element simulation results, the current is more concentrated in the corners of the solder joints, generating a significant amount of Joule heating, which leads to localized temperature rise. The constructed neural network is trained, tested and optimized using the simulation results. The ANN 1, used for predicting solder joint temperature, achieves a prediction accuracy of 96.9%, while the ANN 2, used for predicting solder joint current density, achieves a prediction accuracy of 93.4%.

Originality/value

The proposed method can effectively improve the estimation efficiency of temperature and current density in the packaging structure. This method prevails in the field of packaging, and other factors that affect the thermal, mechanical and electrical properties of the packaging structure can be introduced into the model.

Details

Soldering & Surface Mount Technology, vol. 36 no. 2
Type: Research Article
ISSN: 0954-0911

Keywords

Open Access
Article
Publication date: 16 January 2023

Alessandra Cozzolino and Pietro De Giovanni

This study analyzes sustainable practices adopted by Italian firms to enhance the circularity of packaging and related results in terms of environmental improvements.

3859

Abstract

Purpose

This study analyzes sustainable practices adopted by Italian firms to enhance the circularity of packaging and related results in terms of environmental improvements.

Design/methodology/approach

The authors developed an empirical analysis using publicly available data from the National Consortium of Packaging (CONAI) in Italy, which consists of 603 circular packaging projects. The authors ran both descriptive and prescriptive analyses to determine individual sustainable practices and portfolios adopted to enhance packaging circularity and to verify related reductions in terms of CO2 emissions as well as energy usage and water consumption.

Findings

The findings reveal that firms are more accustomed to focusing on single sustainable practices than on portfolios of practices to achieve packaging circularity. Raw material saving and logistics optimization are the most frequent sustainable practices adopted by firms to improve circularity of packaging. The reuse of packaging allows firms to simultaneously reduce CO2 emissions, energy usage and water consumption. Preferences in terms of portfolio of sustainable practices are strictly linked to the types of materials used for packaging and environmental targets.

Originality/value

The authors investigate environmental practices that firms adopt to support packaging circularity, and the authors detect portfolios of sustainable practices that positively impact environmental performance indicators. This research extends a significant glimpse into the portfolio of sustainable practices for packaging in the circular economy implemented by firms, filling academic gaps and indicating business opportunities and avenues for economic development.

Details

The International Journal of Logistics Management, vol. 34 no. 7
Type: Research Article
ISSN: 0957-4093

Keywords

Article
Publication date: 3 June 2024

Junhui Zhang, Sai Zhang, Yuhua Yang and Wendong Zhang

Based on the micro-electro-mechanical system (MEMS) technology, acoustic emission sensors have gained popularity owing to their small size, consistency, affordability and easy…

Abstract

Purpose

Based on the micro-electro-mechanical system (MEMS) technology, acoustic emission sensors have gained popularity owing to their small size, consistency, affordability and easy integration. This study aims to provide direction for the advancement of MEMS acoustic emission sensors and predict their future potential for structural health detection of microprecision instruments.

Design/methodology/approach

This paper summarizes the recent research progress of three MEMS acoustic emission sensors, compares their individual strengths and weaknesses, analyzes their research focus and predicts their development trend in the future.

Findings

Piezoresistive, piezoelectric and capacitive MEMS acoustic emission sensors are the three main streams of MEMS acoustic emission sensors, which have their own advantages and disadvantages. The existing research has not been applied in practice, and MEMS acoustic emission sensor still needs further research in the aspects of wide frequency/high sensitivity, good robustness and integration with complementary metal oxide semiconductor. MEMS acoustic emission sensor has great development potential.

Originality/value

In this paper, the existing research achievements of MEMS acoustic emission sensors are described systematically, and the further development direction of MEMS acoustic emission sensors in the future research field is pointed out. It provides an important reference value for the actual weak acoustic emission signal detection in narrow structures.

Details

Sensor Review, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 28 July 2023

Mohammad A. Gharaibeh

This paper aims to compare and evaluate the influence of package designs and characteristics on the mechanical reliability of electronic assemblies when subjected to harmonic…

Abstract

Purpose

This paper aims to compare and evaluate the influence of package designs and characteristics on the mechanical reliability of electronic assemblies when subjected to harmonic vibrations.

Design/methodology/approach

Using finite element analysis (FEA), the effect of package design-related parameters, including the interconnect array configuration, i.e. full vs perimeter, and package size, on solder mechanical stresses are fully addressed.

Findings

The results of FEA simulations revealed that the number of solder rows or columns available in the array, could significantly affect solder stresses. In addition, smaller packages result in lower solder stresses and differing distributions.

Originality/value

In literature, there are no papers that discuss the effect of solder array layout on electronic packages vibration reliability. In addition, general rules for designing electronic assemblies subjected to harmonic vibration loadings are proposed in this paper.

Details

Microelectronics International, vol. 41 no. 3
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 12 September 2023

Zhili Zhao, Mingqiang Zhang, Xi Meng, Zhenkun Li, Jiazhe Li, Luying Qiu and Zeyu Ren

The author proposed a friction plunge micro-welding (FPMW) method and applied it to column grid array packaging to realize the connection of copper columns without precision molds…

Abstract

Purpose

The author proposed a friction plunge micro-welding (FPMW) method and applied it to column grid array packaging to realize the connection of copper columns without precision molds assisted positioning. The purpose of this paper is to study the flow behavior of the solder undergoing frictional thermo-mechanical action during the FPMW and to determine the source of the solders in the micro-zones with different microstructure characteristics near the solder/Cu column friction interface.

Design/methodology/approach

Three kinds of Sn58Bi/SAC305 and SAC305/Pb90Sn composite solder samples were designed to study the flow behavior of the solder during FPMW using Bi and Pb as tracer elements.

Findings

The results show that most of the solders in the position occupied by the copper column was softened and plasticized during the welding process and was extruded to side of the copper column, flowing axially, circumferentially and radially along a trajectory similar to a conical spiral line. Under the drive of the tangential friction force and the radial hold-tight force, the extruded out visco-plastic solders fully mixed with the visco-plastic solders on the sides of the copper column, and bonded with the solders that deformed plastically on the periphery, so that a stir zone and a dynamic recrystallization zone finally evolved. The outside plastically deformed solders evolved into a thermo-mechanical affected zone.

Originality/value

The flow behavior of the solder during the FPMW was determined, as well as the source of the solders in micro-zones with different microstructure characteristics.

Details

Soldering & Surface Mount Technology, vol. 36 no. 1
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 27 November 2023

Meng Jiang, Yang Liu, Ke Li, Zhen Pan, Quan Sun, Yongzhe Xu and Yuan Tao

The purpose of this paper is to study the reliability of sintered nano-silver joints on bare copper substrates during high-temperature storage (HTS).

Abstract

Purpose

The purpose of this paper is to study the reliability of sintered nano-silver joints on bare copper substrates during high-temperature storage (HTS).

Design/methodology/approach

In this study, HTS at 250 °C was carried out to investigate the reliability of nano-silver sintered joints. Combining the evolution of the microstructure and shear strength of the joints, the degradation mechanisms of joints performance were characterized.

Findings

The results indicated that the degradation of the shear properties of sintered nano-silver joints on copper substrates was attributed to copper oxidation at the silver/copper interface and interdiffusion of interfacial elements. The joints decreased by approximately 57.4% compared to the original joints after aging for 500 h. In addition, severe coarsening of the silver structure was also an important cause for joints failure during HTS.

Originality/value

This paper provides a comparison of quantitative and mechanistic evaluation of sintered silver joints on bare copper substrates during HTS, which is of great importance in promoting the development of sintered silver technology.

Details

Soldering & Surface Mount Technology, vol. 36 no. 1
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 3 May 2023

Rabia Asif and Adeel Nasir

This study aims to provide a comprehensive bibliometric investigation of the antecedents to financial stability in Islamic banking, a transition economy with a volatile stock…

Abstract

Purpose

This study aims to provide a comprehensive bibliometric investigation of the antecedents to financial stability in Islamic banking, a transition economy with a volatile stock market focusing on banks following the Shariah approach.

Design/methodology/approach

The data for this analysis was extracted from the Scopus database, which combines a comprehensively crafted abstract and citation database with augmented data and linked scholarly works across various disciplines. It quickly finds relevant research and provides access to reliable data and analytical tools. This study deploys “bibliometrix 3.0,” a biblioshiny R-package for influential structure and the VOS viewer for intellectual structure.

Findings

The investigation’s main findings revealed that 1,910 documents were published from 1987 to 2022. Published manuscripts received 39,050 citations, with an average of 10.18 citations per year. However, the instructed empirical research was experienced during 2009 and 2020, while earlier periods (1987–2008) were relatively inactive where banking was considered protective in the presence of BASEL-II capital accords regulations. While the International Journal of Bank Market has been at the top of the list to publish articles related to the area under investigation, the Journal of Banking and Finance is ranked one of the most cited articles. Malaysia has been at the top of the list of countries to research Islamic Sharia compliance principles in the banking industry, and International Islamic University Malaysia has produced enough evidence in this regard. The intellectual structure provided essential foundations for future research, and the bibliometric coupling approach was used.

Practical implications

While most of the banking research has been conducted to determine the banking business efficiency, risk and profitability, little focus is given to financial stability and that too concerning the Islamic banks. Therefore, researchers need to investigate this horizon from an Islamic banking point of view and focus on key issues that discriminate between Islamic and conventional banks in determining their stability level.

Originality/value

Briefly, to the best of the authors’ knowledge, this study would be the first to provide bibliometric information about financial stability keeping in view the sample data from banks with the Shariah approach. Furthermore, the proven analysis demonstrates a novel contribution that financially stable Islamic banks might strengthen the financial industry and overall economy.

Details

Journal of Islamic Accounting and Business Research, vol. 15 no. 4
Type: Research Article
ISSN: 1759-0817

Keywords

Book part
Publication date: 19 March 2024

Graham S. Steele

Cryptocurrency arose, and grew in popularity, following the financial crisis of 2008 built upon a promise of decentralizing money and payments. An examination of the history of…

Abstract

Cryptocurrency arose, and grew in popularity, following the financial crisis of 2008 built upon a promise of decentralizing money and payments. An examination of the history of money and banking in the United States demonstrates that stable money benefits from strict controls and commitments by a centralized government through chartering restrictions and a broad safety net, rather than decentralization. In addition, financial crises happen when the government allows money creation to occur outside of official channels. The US central bank is then forced into a policy of supporting a range of money-like assets in order to maintain a grip on monetary policy and some semblance of financial stability.

In addition, this chapter argues that cryptocurrency as a form of shadow money shares many of the problematic attributes of both the privately issued bank notes that created instability during the “free banking” era and the “shadow banking” activities that contributed to the 2008 crisis. In this sense, rather than being a novel and disruptive idea, cryptocurrency replicates many of the systemically destabilizing aspects of privately issued money and money-like instruments.

This chapter proposes that, rather than allowing a new, digital “free banking” era to emerge, there are better alternatives. Specifically, it argues that the Federal Reserve (Fed) should use its tools to improve public payment systems, enact robust utility-like regulations for private digital currencies and limit the likelihood of bubbles using prudential measures.

Details

Technology vs. Government: The Irresistible Force Meets the Immovable Object
Type: Book
ISBN: 978-1-83867-951-4

Keywords

1 – 10 of over 3000